Pengaruh Penambahan Propilen Glikol, Tween 80, Tween 20 dan PEG 400 Terhadap Kelarutan Furosemide

Rahmadevi1, Auzal Halim2, Ayu Widyaningrum2, Dwi Putri Sepriani4

1,4 Prodi Farmasi STIKES Harapan Ibu
2 Fakultas Farmasi Universitas Andalas
* email: zuldev1807@gmail.com

Abstract
Solubility of Active Pharmaceutical Ingredient is an important role in the formulation of a pharmaceutical preparation. Drugs that have a small solubility showed low bioavailability. Furosemide is a strong diuretic has a solubility value of 0.01 mg/ml and log P 0.74 that are classified into the BCS (Biopharmaceutics Classification System) class 4, are a drug which has low solubility and low permeability. In this study, the addition of surfactants are PEG 400, Tween 80, tween 20, and propilenglikol to increase the solubility of Furosemide. Each of these surfactants measured surface tension in order to get the point of the CMC to view the solubility of 10 mg of furosemide were measured by UV spectrophotometer. Results of the research that has been conducted on concentration obtained CMC point PEG 400, Tween 80, tween 20, and propilenglikol respectively from 0.19 to 0.22%; 0.2 to 0.22% and 6-8%. Based on these results an increase in the solubility of Furosemide.

Keywords: Solubilization, CMC point, Furosemide

Pendahuluan
Kelarutan merupakan salah satu sifat fisikokimia senyawa obat yang penting dalam meramalkan derajat absorpsi obat dalam saluran cerna. Obat – obat yang memiliki kelarutan kecil di dalam air (poorly soluble drug) seringkali menunjukkan bioavailabilitas rendah dan merupakan tahap penentu (rate limiting step) pada absorpsi obat. Lebih dari 50% senyawa kimia baru yang ditemukan saat ini bersifat hidrofobik atau kelarutannya rendah dalam air, sehingga menjadi tidak efisien, dimana akan mengakibatkan kecilnya absorpsi obat tersebut di dalam tubuh. Obat yang dapat diabsorpsi dengan baik berarti obat tersebut menunjukkan bioavailabilities yang baik. Bioavailabilities tergantung pada beberapa faktor seperti kelarutan obat dalam air, sifat permeasi, koefisien partisi, stabilitas dalam keadaan padat1,2.

Solubilisasi obat yang tidak larut atau sedikit larut dalam air adalah tantangan yang sering dihadapi dalam formulasi dan pengembangan obat baru. Sejumlah metodologi dapat disesuaikan untuk meningkatkan kelarutan dan bioavailabilitas obat yang tidak larut air. Obat oral terabsorpsi sepenuhnya ketika obat terdisolusi dengan baik di lambung. Teknik-teknik dalam solubilisasi yang umumnya digunakan untuk meningkatkan kelarutan dan bioavailabilitas obat yaitu mikronisasi, modifikasi kimia, penambahan pH, dispersi padat, kompleks inklusi, mikroemulsi, kosolvensi, solubilisasi misel, hidrotrofi dan lain-lain2.

Obat-obat yang bersifat hidrofobik diantaranya adalah Furosemide. Furosemide memiliki nilai kelarutan 0,01 mg/ml termasuk ke dalam kategori sukar larut, C log P 1,9 dan log P 0,74 serta nilai pKa 3,9. Berdasarkan nilai log P, maka furosemide digolongkan sebagai obat yang memiliki kelarutan rendah dan permeabilitas rendah sesuai dengan Biopharmaceutics Classification System (BCS) kelas 43.

Furosemide merupakan obat diuretik kuat, terutama pada penderita hipertensi. Pada pemberian secara oral, obat ini hanya sekitar 60% yang dapat diabsorpsi sehingga akan menurunkan bioavailibilities obat. Pada pemberian dosis tunggal 80 mg, dicapai kadar puncak dalam plasma(Cp maks) 2,3 µg/ml setelah 60-70 menit dengan durasi 6-8 jam sehingga khasiat obat akan lama dicapai3.

Berdasarkan hal di atas maka perlu dilakukan peningkatan kelarutan
Furosemide. Salah satu yang harus dilakukan adalah dengan menambah surfaktan agar terjadi peningkatan kelarutan. Pada penelitian ini dilakukan percobaan pengaruham penambahan pensolubilisasi dari Propilenglikol, Tween 80, Tween 20 dan PEG 400 terhadap peningkatan kelarutan dan bioavailabilitas obat Furosemide.

Metode Penelitian

Alat
Spektrofotometer UV – Visible (Shimadzu uv-1800), Tensiometer du Nouy, magnetic stirrer, dan alat-alat umum yang digunakan di laboratorium.

Bahan
Bahan yang akan digunakan adalah Furosemide (PT.PRYDAM Tbk), Propilen Glkol PT. (Brataco), Tween-80(PT. Brataco), Tween 20 (PT. MEDICA UTAMA) dan PEG 400(PT. Brataco), aqua bebas CO₂

Pemeriksaan Bahan Baku
Pemeriksaan bahan baku berdasarkan Farmakope Indonesia Edisi III dan United State Pharmacopgia edisi 30 dan Pharmaceutical Exipient

Penentuan Tegangan Permukaan Masing-Masing Pensolubilisasi
Setiap pensolubilisasi dibuat beberapa konsentrasi dalam pelarut aqua bebas CO₂ dan diukur tegangan permukannya menggunakan alat Tensiometer Du Nuoy (secara triplo) dan didapat rata-rata tegangan permukaan untuk setiap konsentrasi pensolubilisasi. Dengan menggunakan rumus :

\[ F = 4nR\gamma \]
\[ \gamma = \frac{F}{4nR} \times \beta \]

Keterangan :
\( \beta \) = Faktor Koreksi Alat
\( F \) = Gaya yang diperoleh dari pengukuran

\( \gamma \) = Tegangan Permukaan
\( 4nR \) = Keliling permukaan cincin

Penentuan Titik CMC dari pensolubilisasi
Berdasarkan nilai tegangan permukaan pada masing-masing konsentrasi pada setiap pensolubilisasi, maka dapat ditentukan titik CMC dari setiap pensolubilisasi tersebut yang ditandai dari data tegangan permukaan yang mulai konstan atau tegangan permukaan yang tidak lagi mengalam penurunan jika konsentrasi pensolubilisasinya ditambah

Penetapan Panjang Gelombang Furosemid dan persamaan regresi liniernya
Sebelum penentuan kurva kalibrasi dari Furosemide, dilakukan penentuan Panjang gelombang dengan membuat larutan induk Furosemide 0,01% dalam campuran pelarut aquadest dan etanol kemudian diukur spektrofotometer UV-Vis pada absorban maksimumnya. Kemudian dibuat satu seri konsentrasi dari larutan induk dan diukur absorbannya pada panjang gelombang maksimum dari furosemide. Sehingga didapat persamaan regresi linier.

Pemeriksaan Kadar Furosemide dengan penambahan Propilenglikol, Tween 80, Tween 20 dan PEG 400
Setelah ditentukan titik CMC pada percobaan di atas lalu ditetapkan 2 titik di bawah titik CMC dan 2 titik di atas titik CMC yang digunakan untuk melarutkan Furosemide 0,01%. Proses pelarutan Furosemide 0,01% dalam aqua bebas CO₂ yang mengandung pensolubilisasi menggunakan magnetik stirrer selama 15 menit. Kemudian diukur absorbannya pada panjang gelombang maksimum dari Furosemide. Kadar Furosemide didapat dari absorban dengan regresi linier dari Furosemide murni.
Hasil dan Pembahasan

Bahan Baku yang digunakan sesuai dengan persyaratan yang tercantum pada Farmakope Indonesia Edisi III dan United State Pharmacopoea edisi 30 dan Pharmaceutical Exipient 11.

Penggunaan pensolubilisasi dengan kadar tinggi sampai mencapai titik CMC, dimana pensolubilisasi diamsuskan mampu berinteraksi kompleks dengan obat tertentu selanjutnya dapat pula mempengaruhi permeabilitas membran tempat absbsi obat karena pensolubilisasi dan membran mengandung komponen penyusun yang sama4.


Tegangan permukaan akan menurun hingga CMC tercapai. Setelah CMC tercapai, tegangan permukaan akan konstan yang menunjukkan bahwa antarmuka menjadi jenuh dan terbentuk misel yang berada dalam keseimbangan dinamis dengan monomernya5.

Misel adalah agregat-agregat molekul pensolubilisasi di badan cairan yang terbentuk karena permukaan telah jenuh oleh molekul – molekul surfaktan. Sedangkan Critical Micelle Concentration atau Konsentrasi kritis misel (CMC) adalah konsentrasi minimum yang diperlukan untuk pembentukan misel. Fenomena terbentuknya misel adalah pada kondisi awal surfaktan mengalami adsorpsi antarmuka yang bertambah apabila konsentrasi dinaikan. Akhirnya tercapai suatu titik dimana pada antarmuka maupun dalam cairan menjadi jenuh dan keadaan inilah yang disebut dengan Critical Micelle Concentration (CMC)6,7.

Nilai tegangan permukaan dan titik CMC pada Tween 80, PEG 400 dan Propilen Glikol, Tween 20 adalah :

Tabel 1. Nilai Tegangan Permukaan dan titik CMC PEG 400 dan Tween 80

<table>
<thead>
<tr>
<th>Konsentrasi (%)</th>
<th>Nilai Tegangan Permukaan (dyne/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEG 400</td>
</tr>
<tr>
<td>0.13</td>
<td>6.8</td>
</tr>
<tr>
<td>0.14</td>
<td>6.7</td>
</tr>
<tr>
<td>0.15</td>
<td>6.5</td>
</tr>
<tr>
<td>0.16</td>
<td>6.4</td>
</tr>
<tr>
<td>0.17</td>
<td>6.3</td>
</tr>
<tr>
<td>0.18</td>
<td>6.2</td>
</tr>
<tr>
<td>0.19</td>
<td>6.1(*)</td>
</tr>
<tr>
<td>0.20</td>
<td>6.1</td>
</tr>
<tr>
<td>0.21</td>
<td>6.1</td>
</tr>
<tr>
<td>0.22</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Tabel 2. Nilai Tegangan Permukaan dan titik CMC Tween 20 dan Propilen Glikol

<table>
<thead>
<tr>
<th>Konsentrasi (%)</th>
<th>Nilai Tegangan Permukaan (dyne/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tween 20</td>
</tr>
<tr>
<td>1</td>
<td>2,3</td>
</tr>
<tr>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>3</td>
<td>2,2</td>
</tr>
<tr>
<td>4</td>
<td>2,1</td>
</tr>
<tr>
<td>5</td>
<td>1,9</td>
</tr>
<tr>
<td>6</td>
<td>1,7(*)</td>
</tr>
<tr>
<td>7</td>
<td>1,7</td>
</tr>
<tr>
<td>8</td>
<td>1,7</td>
</tr>
<tr>
<td>9</td>
<td>1,7</td>
</tr>
<tr>
<td>10</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Ket : *) Titik CMC

Dari hasil pengukuran tegangan permukaan menggunakan alat Tensiometer Du Nouy, Tween 80 dan PEG 400 diukur dari konsentrasi 0,13-0,22% dengan titik CMC pada konsentrasi 0,19% untuk PEG 400 dan 0,20% untuk Tween 80, Tween 20 dan Propilen Glikol diukur tegangan...
permukaan pada konsentrasi 1-10%. Berdasarkan hal tersebut maka pada titik CMC yang dicapai menyebabkan tidak akan meningkatkan kelarutan dari zat terlarut meskipun konsentrasi pensolubilisasi dinaikkan. Hal ini terbukti dari hasil penelitian menunjukkan bahwa tidak terjadi peningkatan kadar Furosemide yang terlarut. Hal ini karena misel yang terbentuk tidak sanggup lagi membantu dengan titik CMC pada konsentrasi 6%. Furosemide untuk melarutkan. Dengan data hasil Penetapan Panjang Gelombang Furosemide dan persamaan regresinya sehingga didapat Kurva kalibrasi dari Furosemide didapat y = 0,52550x + 0,15342 ; r = 0,99957 dan hasil Pemeriksaan Kadar Furosemide dengan Penambahan PEG 400, Tween 80, Tween 20 dan Propilenglikol.

Tabel 3. Hasil pemeriksaan Kadar Furosemide dengan penambahan PEG 400 dan Tween 80

<table>
<thead>
<tr>
<th>Konsentrasi Larutan (%)</th>
<th>Kadar Furosemid (mg)</th>
<th>Perolehan Kembali Kadar Furosemid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tween 80</td>
<td>PEG 400</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>0,18</td>
<td>7,08</td>
<td>11,17</td>
</tr>
<tr>
<td>0,19</td>
<td>6,22</td>
<td>10,48</td>
</tr>
<tr>
<td>0,20</td>
<td>6,55</td>
<td>10,34</td>
</tr>
<tr>
<td>0,21</td>
<td>5,54</td>
<td>9,71</td>
</tr>
<tr>
<td>0,22</td>
<td>6,00</td>
<td>8,81</td>
</tr>
</tbody>
</table>

Tabel 4. Hasil pemeriksaan Kadar Furosemide dengan penambahan Tween 20 dan Propilenglikol

<table>
<thead>
<tr>
<th>Konsentrasi Larutan (%)</th>
<th>Kadar Furosemid (mg)</th>
<th>Perolehan Kembali Kadar Furosemid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tween 20</td>
<td>Propilenglikol</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>5,92</td>
<td>6,98</td>
</tr>
<tr>
<td>5</td>
<td>5,90</td>
<td>7,61</td>
</tr>
<tr>
<td>6</td>
<td>6,13</td>
<td>8,91</td>
</tr>
<tr>
<td>7</td>
<td>6,21</td>
<td>9,56</td>
</tr>
<tr>
<td>8</td>
<td>6,14</td>
<td>9,58</td>
</tr>
</tbody>
</table>

Berdasarkan hasil di atas terjadi proses peningkatan pelarutan Furosemide dalam air dengan bantuan pensolubilisasi berbeda untuk masing-masing senyawa. Tween 80 dan Tween 20 dapat menurunkan tegangan antarmuka Furosemide dan dengan medium sekaligus membentuk misel sehingga molekul Furosemide akan terbawa oleh misel larut ke dalam medium. Sedangkan PEG 400 dan Propilenglikol salah satu jenis bahan pembawa yang sering digunakan sebagai bahan tambahan dalam suatu formulasi untuk meningkatkan kelarutan Furosemide yang sukar larut. PEG 400 dapat membentuk kompleks polimer pada molekul organik apabila ditambahkan dalam formulasi.8,9,10
Kesimpulan
Berdasarkan penelitian yang telah dilakukan dapat disimpulkan bahwa Furosemide dengan Penambahan pensolubilisasi (Tween 80, Tween 20, PEG 400 dan Propilenliko) terjadi peningkatan kelarutan dalam air di bawah titik CMC.

Daftar Pustaka